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Abstract-Natural convection in a rectangular cavity is considered for the problem where one vertical wall is 
heated and the other is cooled. The boundary layer flow is solved using a modified Oseen technique in a 
manner similar to Gill’s solution. Temperature and velocity profiles in the core, and the Nusselt number, are 
found as functions of the Rayleigh and Prandtl numbers and the length ratio. The solution indicates that for a 

Prandtl number less than l/7, a midsection shear layer develops. 

NOMENCLATURE 

C, constant of integration; 

9, gravitational constant ; 

H, cavity height; 

K = (Pr - l)/(Pr + 1); 

L, cavity length; 

Nu, Nusselt number ; 

P? pressure; 

Pr, Prandtl number ; 

49 =2u,/v2 (K + 1)3; 

Q, total heat flux; 

Ra, = jlgL3 (TL - T&q Rayleigh number; 

T, temperature; 

11, w, velocity components, u = a*/az, w = 
- a$fax ; 

0, = A, + 3.2 - IL3 - A,; 
x, z, coordinates. 

Greek symbols 

a, thermal diffusivity ; 

A thermal expansivity ; 
8, = (L3/H3Ra)"4; 
) +, roots of characteristic equation ; 
V, kinematic viscosity; 

*9 two-dimensional stream functioh. 

Subscripts and superscripts 

4 averaged value ; 
L left cavity wall; 
R, right cavity wall; 
0, core quantity; 
* dimensional quantity. 

INTRODUCTION 

THE PROBLEM of natural convection in a rectangular 
cavity when the two walls are maintained at different 
temperatures was first solved by Gill [l] for the case 
where the heat transfer is due almost entirely to 
convection. He, however, considered only the infinite 
Prandtl number limit, and handled the matching of the 
core flow with the top and bottom boundary layers in a 
somewhat artificial manner. Bejan [2] has shown a 

more reasonable matching condition and obtained 
overall Nusselt numbers which are in good agreement 
with available experimental and numerical heat- 
transfer data. 

The present note generalizes Gill’s results for arbit- 
rary values of the Prandtl number, so that the small 
Prandtl number limit, suitable for liquid metals, can 
also be obtained. The method of Bejan is used in 
evaluating the constant of integration which appears 
in the solution. 

BASIC ASSUMPTIONS 

The height of the cavity is taken as H and the 
horizontal spacing of the walls as L. The vertical walls 
are at the constant temperatures T, on the left and TR 
on the right of the cavity. Dimensionless variables 
suited to a boundary layer on the left wall are 
introduced according to 

x = x*jcH, z = z*/H, 

T = [T* - O.S(T, + TR)]/(TL - T,J, 

II/ = VW, P = p*I&H(TL - TR), 

where quantities with asterisks are dimensional, and 
Ra and Pr are the Rayleigh and Prandtl numbers. The 
energy and Navier-Stokes equations become, under 
this transformation, 

dT aT a2T a2T 
u-+w-==+&2---, 
ax aZ ax2 az2 (1) 

(F2,Pr)(U~+W~)=-~+E2~+~4~, (2) 

(~,Pr)(u~+w~)= -$+T+$+E~$. (3) 

The boundary layer thickness parameter E will be 
assumed small compared to the length ratio L/H, and 
E2/Pr small compared to unity. The boundary layer 
equations are then obtained by formally letting E be 
zero in equations (l), (2) and (3). 

In the core of the cavity, the stream function, 
temperature, and vertical distance are scaled the same 
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as in the boundary layer to allow matching of the 
boundary layer and interior solutions. When con- 
vection is the principal driving force, it is expected that 
the temperature in the core will vary only with the 
vertical coordinate, and that the streamlines will be 

nearly horizontal. From the energy equation, it follows 

that in the core 

U’ = w&) = i:2 d2T() ! d.Tt 
dz2 dz 

Hence the stream function in the core is, to the lowest 

two orders, 

BOUNDARY LAYER SOLUTION 

Using a modified Oseen technique suggested by 
Carrier [3], theconvective terms in the boundary layer 
equations are linearized by using values for the 

horizontal velocity and vertical temperature gradient 

which are averaged. These averaged values are then 
determined by assuring that global mass and energy 

balances are achieved. Under this approximation the 
boundary layer equations of energy and vertical 

momentum become 

u g+wdT,_i2T 

A ax dz (‘.X2 ’ 
(5) 

p2w 
Pr=T-To+-- 

5x? 

The A subscript indicates the averaged values. 
A set of coordinate axes will be used with origin at 

the midpoint of the left boundary of the cavity. The 

solution of equations (5) and (6) near the left vertical 

boundary which satisfies the no-slip and isothermal 

conditions and matches with the core flow is 

$(x,z) = $,(z)[l - (& ee”” 

- i., e /:J*)/(j.z - I.,)], (7) 

T(x,z) = T,(z) - ~~1L2$o(z)[~L2(~L2 +u,/Pr)e-“‘” 

with 

- i.,(i, +u,,/Pr)e~~““]!(R,-i,,). (8) 

tf+0i_,i~2(i., + i., + u,d/Pr) = T, - 112. (Y) 

The parameters i,,, i2 are functions of z, and are the 
two roots with positive real parts of 

i,‘(i + a,.,)(2 + u,JPr) + dT,/dz = 0. (10) 

Symmetry suggests that To will be an odd function 

ofz, and tiO an even function ofz. Hence, uA and T, will 
both be odd functions of z. When u,~ is positive (flow 
from the left boundary layer into the core) the roots RI 
and Rz will be complex, and thus the boundary layer 
portions of the velocity and temperature fields will 
exhibit oscillatory decay. Where u,~ is negative (flow 

into the boundary layer) the roots I ,_ ,._ will he real. 
with simple exponential decay. 

Since equation (10) is invariant under the simul- 
taneous sign change of z and i,. it follow\ that 

i.,(z) -= --X,(-z). i,l:i /.‘i .:I 

‘Thus if the same u,< and T,, at-e used on both of the 
vertical walls of the cavity, the stream functions and 

temperature near the right wall will have the same 
general form as equations (7). (8) and (Y), but wtth t 

replaced by (I, - x*)/‘cH, i.,(z). i?(z) by ;,,I Z I. 

I,( -z), and some sign changes. 

To complete determination of the core flow, the 

energy change in the boundary layer is required to be 

due entirely to the transfer from the wall and the core. 
Integration ofequation (1)over the left boundary layer 

gives 

Substitution of equations (7) and (8) gives 

d 

-I- 

(lj2 - T,J2 

~~ ~~-1 

d’l,, 

dz ~2(i, +i,)[i., +12+u~g;‘f’r]2 
- $0 i;~ 

= (1.‘2-To)[~,+iz-i.,i.z~(/~, !-/.,+u,+‘Pr)]. 

112) 

Equations (9) and (12), along with their counter- 
parts on the right vertical wall, contain the four 
unknowns tiO, T,, u,, T,q. Their solution is made much 
easier by the introduction of new variables q and I‘ 

according to 

I’ = i,, + /~2 -~ i, /~.$ ‘p 0. (13) 

q = 2u,i~(K + I). 114) 

with 

K = (Pr - l)/(Pr t I ). (15) 

The parameter K varies between minus one (Prandtl 

number equals zero) and plus one (Prandtl number 
equals infinity). The use of the set of parameters I‘, y. K 
makes the details of the calculation procedure fairly 

uniform in Prandtl number, at least (as will be seen) for 
Prandtl number greater than 117. 

Introducing the variables L’, y and K into equation 
(IO), the result is 

i., + R, = r(l - (I)?. 06) 

i,,i., = ~‘(1 - K”q”)(l - q)‘X, (17i 

>.,,I, = u{l - Y -t i[(l - q)(l + [ll 

- 2 K2q2)]“2;./4, (18) 

and 

dT,/dz = 8(1 - K%J’)~( 1 - 4’)/64. (19) 

Substituting equations (16) and (17) into (Y), and 
taking into consideration the corresponding equation 
on the right wall, the result is 
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&, = -8/v3(1 - K2qZ)(1 + Kq*), (20) 

T, = q(K + 1)/2(1 + Kq2). (21) 

A similar procedure with equation (12) yields, after a 
good deal of algebra, 

U = 2(1 _ qZ)‘K- 3v3w+ 1) 

(31 

dz/dq = 

t Kq2)2’3(1 - K2q2)2’3, 

C4[4K + 3 - K(3K + 5)q2 + K3q4] 

x (1 + Kq2)2’3( 1 - K2q2)5’3/ 

2(1 _q2)‘7K-9”3(K+ 1) [I + K(2 

2 (llK2+45K+SO)/3(K+l)(K+2) 
+K)q )I 

(22) 

(23) 

where C is a positive constant of integration. The 
relation between q and z is thus found by integrating 
equation (23) from q = 0, where z = 0. The functions u, 
T,, and $,, are found as functions of z by substitution 
into the appropriate expression. 

DETERMINATION OF THE INTEGRATION 
CONSTANT AND NUSSELT NUMBER 

The constant C remains to be determined. (The 
value of R, + L2 at z = 0 is l/C; thus C is a measure of 
the boundary layer thickness at the midpoint of the 
cavity.) Gill used the condition that the net flow in the 
boundary layer be zero at the top and bottom of the 
cavity (z = + l/2), giving for the large Prandtl number 
limit C = 0.912. For this value, To = l/2 at z = l/2, 
and I,,, i,, become infinite at z = -l/2. 

As pointed out by Bejan [2], the condition used by 
Gill is not conceptually the best. It is applied in a 
region where the solution itself is not applicable, and if 
an adiabatic rather than an impermeable condition 
were required at the top and bottom of the cavity, the 
condition cannot be met by the boundary layer 
solution at any z. The results of imposing the imper- 
meability condition are infinite horizontal velocities in 
the interior, and infinite vertical temperature gradients 
in the boundary layer. 

As an alternative, Bejan suggested that if the top and 
bottom boundaries are insulated, a condition of zero 
vertical energy flux on the vertical boundary layer and 
core solutions is more likely to match the core solution 
to the horizontal boundary layers. These boundary 
layers then are of the conventional type, and act mainly 
to meet the no-slip requirement. 

By integrating the energy equation across the width 
of the cavity, Bejan found, in terms of the present 
dimensionless variables, that 

dQ ‘dT x=L’EH ~=~ 
dz ax X=o 

(24) 

where 

Q= 
? ! (25) 
0 

Substitution of the previous boundary layer solution 
gives 

s 

L/aH 

wT dx = 2/u3(1 + Kq2)2, (26) 
0 

- 2$(o(1 +(1Kq2))’ (27) 

Thus Q is even in q (and hence z), so that the top and 
bottom of the cavity can be treated in the same 
manner, in contrast to Gill’s condition. Requiring zero 
vertical energy flow at the top and bottom of the 
cavity, where q = q,, gives 

1 dz 

!--I r3 dq qe 

LE(K + l)( 1 - Kq,2)/4H - E’( 1 + Kq,2/3)/u, 
= 

1-aZq,2u;(l+K)(1+Kq:)3/12 ’ 

(28) 

The second term in the denominator of the RHS of 
equation (28) will always be small compared to unity 
and can be neglected. For K different from minus one, 
the first term in the numerator dominates and 

C7 = 4(K + ~)(L/H&I”~)~‘~ 

x (1 _q~)Wx- 18)/3(K+2) 

x [~+K(~+K)~,Z]“~K~+~ZK+S~)/~(K+~)(K+~)/ 

[3+4K-K(3K+5)q;+K3qt] 

x (1 + Kq,2)8’3( 1 - K2q;)8’3. (29) 

As K approaches minus one (more precisely, for Pr << 
(H/LRu)“~), the second term in the numerator will 
become as important as the first, and must be included 
in the calculation for C. 

Gill’s result is obtained from equation (28) in the 
limit as R~J”~ H/L approaches infinity. For the large 
Prandtl number limit, Bejan shows that 
C(HRU”~/L)“~ can be up to 30% higher than Gill’s 
result. 

For engineering applications, the important result is 
the overall Nusselt number, defined as 

Nu = - (L/&H) 
1’2 aT 

s I 
- 

-112 ax 
dz. 

x=0 

For the present solution, this results in 

” Nu(RaL/H)-l/4 = (C3/8) 
s 

dq(1 -q)2(1 -Kq)2 
-4, 

x (I-K2q2)[4K+3-K(3K+5)q2+K3q4]/ 

(1+Kq2)(1_q2)2(K-1)l(K+1) 

x (1+K(2+K)q2)(9K2+36K+39)/3W+1)(K+2) 
. (30) 

RESULTS AND DISCUSSION 

The results of the numerical integration of the 
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FIG. 1. The dependence of qe, C, and Nusselt number on the 
length ratio and Rayleigh and Prandtl numbers. 

preceding equations are given in Figs. l-6 as functions 
of K and the combination Ra"'H/L. The Nusselt 

number results are also given in Table 1. The para- 
meter Nu(Ra L/H)'14 is seen to decrease only slightly 

with decreasing Prandtl number, varying less than 

20% when the Prandtl number is decreased from 
infinity to 0.05. Decreasing Prandtl number brings qp 

closer to unity. As pointed out by Bejan, values of ye 

less than unity imply that the fluid entering the 
boundary layers at the top and bottom of the cavity 
has finite vertical velocity. Thus, this velocity decreases 
with decreasing Prandtl number. 

An interesting effect due to the Prandtl number can 

be seen from equation (23). When K = -0.75 (Pr = 

l/7), dz/dq vanishes at q = 0, and hence the tempera- 
ture gradient at that point becomes infinite. Lower 
values of K in fact make z multi-valued in q, which is 

0.5 

0.4 

0.3 
z 

0.2 

0 .l 

0 

not admissible. The explanation would appear- to be 

that, since the horizontal velocity component is zzrcj 
along the horizontal centerline of the cavity, there IS 
insufficient heat transfer between the boundary iaycl 

and the core in this region for Pr c 1 7 The solution 
suggests the need for a shear layer aionp this centerline 

to remove the discontinuities in temperature and 
velocity which develop. It is reasonable to assurnc rhat 
the present solution is still applicable above and b&n% 
this shear layer. Theintegration ofequation (231 would 

then commence from y(, rather than zero, where q,, I:, 
the value of q at which dz’dy vanishes Thus 

The implication of this change In the Interval of 

integration is that the original scaling of the coor- 

dinates is becoming less appropriate. Since the approx- 
imate equations (5) and (6) are linear. all information 

is still preserved in the solution. but finer steps in the 

integration procedure may be necessary. 
The stream function i. is a measure of the flow rate 

in the boundary layer. As the Prandtl number de- 
creases, so do r,, and $” and thus the boundary layer 
fiow rate. For values of Ru' 'H/L near unity (when in 

all likelihood the theory is not valid). the values of $, 
near the cavity top and bottom differ substantially 
from zero, while for larger values of this parameter it is 

nearly zero. Thus for most of the range of the Rayleigh 
number considered, there is little flow rate in the top 

and bottom boundary layers. 
On the basis of experiments m air, Yin et (I/. 141 

suggest that the present theory should be valid for Ra 
> (10 I-JlL)4 Pr. No upper limit ib given by them but 

Macgregor and Emery [5] suggest Ra < lo6 Pr,giving 
no explicit form for the length ratio dependency. Yin 
suggests that the slopes of the lines separating the 

conduction, transition and convection regions are the 
same, Ifthis holds true for the postconvection region as 

well, then Ra < lo6 (H'L)" Pr. 
The present approach would appear to be applic- 

able to more general cavity shapes, and for other than 
adiabatic top and bottom walls. It is not, however. 

suited for non-horizontal walls which areadiabatic, for 

once the stream function is determined. only the ratio 
T,&,) remains to be adjusted in the expression for 

-1.2 -1.0 -0.6 -0.6 -0.4 -0.2 

% 

FIG 2. Core temperature and stream function for Rtr’ ’ HII. = 1 
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FIG. 3. Core temperature and stream function for Ra”’ H/L = 10. 
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FIG. 4. Core temperature and stream function for I&‘/’ H/L = 100. 
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FIG. 5. Core temperature and stream function for &I”’ H/L = 1000 

0.1 0.2 0.3 0.4 -0.6 -0.6 -0.4 -0.2 

TO % 

FIG. 6. Core temperature and stream function for Ra"' H/L = 10000. 
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Table I. 

K = - 0.9 
Ru’ - H 12 I’r = 0.05263 

1 0.2557 
> 

4 0.2781 0.2905 
7 0.2985 
IO 0.3012 
I00 0.3094 
1000 0.3 108 
10 000 0.3 1 IO 

h ; 0.75 
P,- = 0 1429 

0.2554 
0.2838 
0.30 19 
0.31 I’ 
0.3153 
0 3262 

0 3279 
0.32x2 

temperature. For adiabatic walls, this vanishes and 

there are then no adjustable parameters. Most present 
theories of stratified flows have this difficulty. The 

theory of Walin [6] and Rahm and Walin [7] for 
instance is designed for the case where the normal 
temperature gradient is proportional to temperature. 

The theory breaks down as the constant of pro- 

portionality vanishes. Further, it neglects the con- 
vective terms completely, and thus is suited for much 

slower flows than the present theory. 
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0 2409 
0.2819 
0.3093 
0.3232 
0.3295 
0.3455 
0.34xtJ 
0.3484 

h 1 
Pr-- I 

0.2366 0 2402 
0.2727 0.2749 
0.3034 0.3043 
0.3220 0 3223 
0.3310 0 3313 
0.3560 0 357X 
0.3601 i I .3623 
0.3606 0 3629 
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INFLUENCE DU NOMBRE DE PRANDTL SUR LA CONVECTION 
NATURELLE DANS UNE CAVITE RECTANGULAIRE 

RbsumP On considere la convection naturelle dans une cavite rectangulaire dans le cas ou une paroi 
verticale est chauffee tandis que l’autre est refroidie. L’ecoulement de couche limite est traite en utilisant une 
technique modifiee d’Oseen de favon semblable a la solution de Gill. Les profils de temperature et de vitesse 
dans le noyau, et le nombre de Nusselt sont donnes en fonction des nombres de Rayleigh et de Prandtl et du 
rapport d’allongement. La solution montre que pour un nombre de Prandtl inferieur a 1:7, il se developpe 

une couche de cisaillement i mi-section. 

DER EINFLUSS DER PRANDTL-ZAHL AUF DIE FREIE KONVEKTION 
IN EINEM RECHTWINKLIGEN HOHLRAUM 

Zusammenfasstq-Freie Konvektion in einem rechtwinkligen Hohlraum wird fur den Fall untersucht, 
bei dem eine senkrechte Wand geheizt und die andere gekiihlt wird. Die Grenzschichtstromung wird mit 
Hilfe einer modifizierten Methode nach Oseen Phnlich der Losung von Gill berechnet. Temperatur- und 
Geschwindigkeitsprofile im Kern sowie die NuBelt-Zahl ergeben sich als Funktionen der Rayleigh- und 
Prandtl-Zahl und des Langenverhaltnisses. Das Ergebnis zeigt, da8 sich fur Prandtl-Zahlen kleiner als 1:7 

eine Scherstromungsschicht im Mittelschnitt ausbildet. 
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BJIRIfHWE YRC_iIA IlPAHATJlri HA CBOSO,L(HYIO KOHBEKUZIIO B 
lIP5IMOYTOJlbHOfi IIOJlOCTM 

AHHOT~UIU- npOBeLIeH0 HCCnenOBaHHe eCTeCTBeHHOti KOHBeKUUli B npKMOyrOnbHOfi nOnOCTW. OnHa 

si3 CTeHoK K0~0pOii Haq2cBaeTcn.a npyraa 0xnamnaeTcn. PelueHae arm TeqeHm B norpaHwmioM cnoe 

nony~eHocnoMouxb~Monm$muipoBaHHorordeTona 03eeHaaHanorurHopememuo &minna.np+inu 
TeMneparypbI r( CKopocTu B mnpe noToKa w wcno HyCUXbTa onpnensnlicb KaK I$~HKIUI)I wicen 
Penes ki npaHnTns A 0THoweHm JDIHH CropoH. nOKa3aHO. 9To npu 3Ha4eHmx wicna IlpaHnTnm. 

MeHbwix l/7, no MuneneBy cesemiko pa3susaeTca cmeroeoii cnok 
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